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Lattice Boltzmann simulation of the two-dimensional Rayleigh-Taylor instability
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A lattice Boltzmann model for multicomponent fluid flows is used to simulate the two-dimensional
Rayleigh-Taylor instability. The dynamical processes of the instability, varying from linear growth to mixing,
have been simulated. The results agree with experiments, analytical studies, and other numerical simulations.
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The Rayleigh-TaylofRT) instability occurs when a low- | | | | t,G- G
density fluid pushes a high-density fluid or a heavy fluid lies ~ fi(x+Ci,t+1)—fi(x,t)=(Q))*+(Q))*- - @
above a light fluid in a gravitational fieldL]. This problem d
continues to attract attention partly because of its role invheret, andcy are constants, the indéxefers to either the
understanding inertial confinement fusig@,3]. Analytic  first or the second fluid, and the mdexequalsc For the
methods, including perturbation methods, are mostly valid irfirst part of the collision operator we use the Bhatnager-
the linear region and turbulent models are mostly applied irGross-Krook(BGK) approximation20—22,18,23
the mixing region. Direct numerical simulatiotDNS),
which solves the dynamic fluid equations, is able to study (Q!)l:_ E(f!_f!(eq)) 2
processes related to the Rayleigh-Taylor instability, but its ! A
usefulness is limited by computational power. Recently
DNS of the Rayleigh-Taylor instability became feasible be- ‘which represle(gc;[)s the process of relaxation to local equilib-
cause of the emergence of high-performance computeréum wheref;*"" is the local equilibrium distribution func-
Youngs[4—6], Glimm et al. [7], and Li[8,9] simulated the tion and 7 is the relaxation time. One suitable equilibrium
RT instability using marker-and-cell, front-tracking, and distribution function leading to the Navier-Stokes equations
level-set methods. The simulations reveal much useful inforiS s[18]
mation which has helped in the understanding of the growth
of the instability. fieV=r p+typ

The lattice gag10] and the lattice Boltzmann methods
[11] are novel numerical schemes based on mesoscopic d
namics which provide alternatives to traditional numerical
techniques for simulating fluid flowgl2]. These methods
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Herec, t,, andr, are listed in Table I, where; (1=1,2)

are acoustic speeds of the two fluids. The greek subsetipts
. ! . nd B denote the spatial directions in Cartesian coordinates.
can simulate the macroscopic equations accurately and e

ciently, and also preserve some of the advantages of kinetigrk::ja tfht: ! %Zr;?gy’)c’othi dtszét_ites 0;::/ Odg;-l:]de%h ; nd_pz,
equations, including easy programming in parallel computer.iL s §1 S plz fv I—WE " ! YP=p1
and accurately simulating flows with complicated wall ge- p‘lgﬁ P1==i a ; f' tlh, puﬁ. iGli - 17 in E
ometries and interfaces. Gunstensgml. [13] simulated the @) is %;?:gg asp?c:II;WS' e collision operafd#,17 in Eq.
Rayleigh-Taylor instability using a two-phase lattice-gas '
model. Lattice Boltzmann methods for multiphases and mul- 2(¢-F)?
ticomponents have been developed by Gunstereses. Q2= |F|( )
[14], Shan and Che[i5], and Swiftet al.[16].
In this paper we extend the multicomponent model ofwhere F(x)=3;c[pi(x+c)—p(x+¢)] is the local color
Gunstenseret al. [14] and Grunawet al. [17] for studying  gradient, and is a free parameter which is linearly propor-
the two-dimensional Rayleigh-Taylor instability. A square tional to the surface tensiofG is a vector representing an
lattice with multiple speeds is used. Let us deffifx,t) as  external force. To maintain the interface between fluids, we
the total particle density distribution, atand timet with  follow Gunstensen’s schenii&4] to redistribute the particles
velocity . Here fi=f!+f2?, i=1,...,9 for the D2Q9
model[18] ori=1,...,13 for theD2Q13 [19] model. The
velocity ¢ includes eight vectors along the links of the
square lattice and a zero velocity for the D2Q9 model.

4

TABLE 1. The parameters in the equilibrium distribution
function.

. » . ‘ X Model ¢ t, t; t, t r r r r
D2Q13 also includes four velocities with speedi2 lattice a 0t 2z 0 ! 2 4
units). These velocities ar¢0,0), (+1,0), (0+1), (*x1, D2Q9 % & § % 1-3¢2 3¢ ¢
*£1), (£2,0), and (0+2). The lattice Boltzmann equation D2Q13 2 £ { % 355 1-3c¢2 fec? H¢2 13567

for fluids can be written as
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after each collision step in a way that maximizes the quantity 0.0005 - - - . -

1 . .. theoretical result
(ZiGf;) - F, while requiring thap4, p,, andf;(x,t) are con- numerical results O
served at each site. 0.0004 |

Using the Chapman-Enskog multiscale technigilid, we
can obtain the following macroscopic dynamical equations in
the low Mach number or the nearly incompressible limit: 0.0003

w1/at)

atp+aa(pua)zoa (5) 0.0002

at(pua)+aﬁ(puauﬁ)=_&ap_aﬁﬂ-aﬁ_Gal (6)
5 5 , 0.0001
P=Cip1+Copo+P’, map=vp(dUgtdpuy,).

Here viscosityv=c3/2(27— 1) andp’~|V -F| are zero ex- o Ry VR =
cept in the interface between the two fluids, creating the ' ) sy ' '

effects of surface tension. Using the definition of mechanical

surface tension, and after some algebra, we obtain an ana- FIG. 1. The growth ratey vs the wave numbek. Ax is the

lytic formula for the surface tensionr=12arp or 42a7p lattice spacing andt is the time increment.

for the D2Q9 or the D2Q13 model, respectively. We point

out that we have multiplied by the proper factgin EQ.(4)  theory and the lattice Boltzmann simulation is reasonably
for each velocity in order to obtain an isotropic surface tenyood. However, a small difference is observed and the dif-
sion. For example, for the D2Q13 model=42a7pg(6s),  ference seems to increase with increasing of the wave num-

where g(6f) =5 Zic(t,/t;)cos(26—26;)=1. Here 6; is  ber. We do not have insight at this stage about this differ-
the angle between theaxis and the normal of the interface ence.

and ¢; is the angle between theaxis andc;. It is the proper The dynamics of this flow can be described by five di-
choice factors that makg(¢;) constant. This is an important mensionless parameters: the Atwood numbé&s=(p;
extension of the single-speed multiphase model. —p2)/(p1+p2); the Reynolds numbeR.=LV/v; the Euler

Numerical simulations of the Rayleigh-Taylor instability number, E=P/(pV?); the Froude numberF.=V?/(gL);
have been carried out using the above two lattice Boltzmangand the Strouhal numbes,=L/(TV). L, T, V, P, andp are
models. First, the linear growth rate was checked for thehe characteristic length, time, speed, pressure, and density.
D2Q9 model. In the simulation we sét= — pge, to provide  Figure 2 shows the evolution of interfaces using the D2Q13
the gravitational acceleratiog, along the negativg axis.  model with g=10"%, v=0.2, p;=3, p,=1, 0=0, A\=60
Initially, a fluid of densityp, rests on the top of another fluid and the D2Q9 model with the same five dimensionless pa-
of density p,(p1>p,). To get the correct pressure for the rameters for times agt=>5, 10, and 18, for which the linear
stationary fluid, we tak&,=cy, C;=(p2/p1)Cq. A small  growth rate isy=0.917x 10 3. As shown in Figs. &) and
perturbation y(x) =y, coskx) is added at the interface, 2(b), the sinusoidal perturbation grows initially and then
wherey,<0.02\, the wave numbek=27/\, and\ is the  changes into a round-topped bubble, and then the light fluid
wavelength of the perturbation. The height of the fluid in therises into the heavy fluid and spikes formed by the heavy
vertical ory direction,H, satisfiesHk> 1. Periodic boundary fluid fall into the light fluid. As the spike falls, the Helmholtz
conditions are used in the horizontal direction and smoothinstability along the edges of the spike induces a mushroom-
wall conditions are used at the top and bottom. The linearly
perturbed solution of Eq44) and (5) in the incompressible 200
limit predicts that the amplitude of perturbation increases
with time [3], 150

h(t)=age”+bye™ """, 100
whereag,by satisfyag+bg=yg, agy—bgy’' =0, andy,y’ %
=0. y is the linear growth rate and satisfies the dispersion % 0

relation,
-50
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wherew=py v, a=(p;—pz)kg—ko.

Figure 1 shows a comparison of the linear theory with F|G. 2. Interface evolution for the RT instability at=6, 10,
numerical results. In the simulation, we have taken0.25  and 18. The solid curve is the result for the D2Q13 model and the
X104, 7=1, p;=3, andp,=1. The agreement between dashed curve for the D2Q9 model.
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FIG. 3. Heights of the bubble and the spike as a function of
time.
like flow pattern. This result agrees with the results of a finite {c) gt?=1250(Ax/At%)

difference code using the front tracking methdds,7]. Fi- -100 ! 1 ' 1 '
nally, in Fig. 2c) the mushroom breaks and drops are 0 %0 100 :(ig) 200 200 300
formed. At this stage of the instability the interface is very

complicated. It is difficult to track these complex motions FIG. 4. Interface at(a gt?=50, (b) gt?=450, and(c) gt?
using conventional numerical methods. It can also be seef 1250 forv=1/1500.

that the results of the two models agree well. This further

confirms the reliability of the lattice BGK modél)—(4).

, . . ) increases from=L,/25 to ~L,/2 at the end of the simula-
Figure 3 shows the time evolution of the height of theI x X mu

. o . . . tion. This phenomenon agrees with the results of Youngs
heavy fluid moving into the light fluid and the height of the [4.5] usingpMAC methods%r Van Leer methods. In our re?

light fluid moving into the heavy fluid using D2Q13. Initially . .
the heights grow exponentially. Then, after a transition, thesults, there are more small droplets near the interface. This

bubble rises with constant velocity. This agrees qualitativel)}dj'ffer.e n(;e rtr;a);l :jlofge from the fact that we use the same
with Taylor's experiments. Taylor derived an empirical for- 9€nSity for both fluids.

mula for the bubble velocityV,=CAgr, whereC=0.32 Figure 5 shows the width of the mixing region as a func-
andr is the bubble radius. Taking=\/2, the Taylor for- tion of gt? for two viscosities. The mixing region is defined

mula givesV,=0.0124, which is to be compared with the &S the_reg.ior] in which the average concentrat_ion of one of
best fit in Fig. 3\, =0.0107. It should be pointed out that in the fluids is in the range 0.01 to 0.99. The widths are ap-
the Taylor experiment, the dimensionless parameRer proximately linear functions o§t?. This result is similar to
= vk?y is much smaller than 1, whereas in our numericalearlier experimental and theoretical resuiest,4,5,7,25,8
simulationR equals 2 due to the relatively large viscosity in
the lattice Boltzmann model. The difference in the growth 200 ; . ; ;
velocity could be attributed to the different valueshotised. v=1/30 ——
Finally, we simulated the growth of the instability from 0.130g8°+8.96 ——
random initial perturbations. The perturbation ik 160 - V=1/1500 e
=3 ,a,c08kX)+ by, sinfkX), ky=27nL,*. HereL, is the 0.121g422.3 -
length of the simulation domain in theor horizontal direc-
tion anda, ,b,, were chosen at random from a Gaussian dis-
tribution, NC[ Nyin,Nmax- We have chosen the two fluids to
have the same densitfor better numerical stabilifyin this
simulation, but they are subjected to different body forces,
p1=p2 and G=—(g;p11+92p,)€. This can be considered
to be the ideal limit of the Rayleigh-Taylor instability when 0
p1 approacheg, but g approaches infinity in such a way
that the difference in the gravitational force remains con- $
stant. We set);= —g,=g, although this is not required. 0 - L . L
Two simulations were run with 300300 points,g=0.5 0 250 0 6750 1000 1280
X 107%, Npmin=1, Nmax=30, andv= 1/30 or 1/1500. Figure 4 graniary
shows the location of the interfaces gt*=50, 450, and FIG. 5. Width of the mixing region as a function gt?. The
1250 for »=1/1500. Because of interactions betweenstraight lines were obtained by fitting the formulas described in the
bubbles and drops, the dominant wavelength of the interfacext.
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The depth to which the light fluid enters the heavy fluid isWe fit the numerical results of the mixing width using this
given by equation. These fits are included in Fig. 5. The valueg of
B 2 are 0.65 and 0.61, respectively. These numbers agree well
h(t)=aAgt+ho, (8) with experiments and other theoretical results. Of course this
whereh, and« are constantsz is found to be insensitive to IS NOt a direct comparison. .
the density ratio. The experiments gave amf 0.6 to 0.7 In this paper, we have applied a lattice Boltzmann model

and theoretical studies including numerical simulations gav@ased. on a previ_ous ”.".J'“wmpof‘e”t model to simulate the
an « of 0.4 to 0.7. It is difficult to compare our numerical Rayleigh-Taylor instability. The linear growth rate agrees

results with the above equations quantitatively because ogfith analytic solutions for incompressible fluids. The single
simulations assumeg = p,. A reasonable generalization of ubble dynamics agrees with experiments and other methods

Eq. (8) is qualitatively. The velocity of the bubble is close to that of an
incompressible ideal fluid. The instability caused by random
p191— P20> initial perturbations has also been simulated. This result
h(t)=aft2+ ho. agrees with experiments and other theoretical results. Our
P17 P2 work shows that the lattice Boltzmann model is a useful tool
When 01=0,=09, Eq (8) is recovered. Assuminglz for Simulating Rayleigh-Taonr instabilities. An important

—g,=0, p1=p,, andw=2h, the above equation becomes €xtension of this work is to develop a lattice Boltzmann
model which simulates multicomponent fluids with different

w(t)=2agt?+ 2h,. densities and very small viscosities.
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