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Lattice Boltzmann simulation of the two-dimensional Rayleigh-Taylor instability
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A lattice Boltzmann model for multicomponent fluid flows is used to simulate the two-dimensional
Rayleigh-Taylor instability. The dynamical processes of the instability, varying from linear growth to mixing,
have been simulated. The results agree with experiments, analytical studies, and other numerical simulations.
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The Rayleigh-Taylor~RT! instability occurs when a low-
density fluid pushes a high-density fluid or a heavy fluid l
above a light fluid in a gravitational field@1#. This problem
continues to attract attention partly because of its role
understanding inertial confinement fusion@2,3#. Analytic
methods, including perturbation methods, are mostly valid
the linear region and turbulent models are mostly applied
the mixing region. Direct numerical simulation~DNS!,
which solves the dynamic fluid equations, is able to stu
processes related to the Rayleigh-Taylor instability, but
usefulness is limited by computational power. Recen
DNS of the Rayleigh-Taylor instability became feasible b
cause of the emergence of high-performance compu
Youngs@4–6#, Glimm et al. @7#, and Li @8,9# simulated the
RT instability using marker-and-cell, front-tracking, an
level-set methods. The simulations reveal much useful in
mation which has helped in the understanding of the gro
of the instability.

The lattice gas@10# and the lattice Boltzmann method
@11# are novel numerical schemes based on mesoscopic
namics which provide alternatives to traditional numeri
techniques for simulating fluid flows@12#. These methods
can simulate the macroscopic equations accurately and
ciently, and also preserve some of the advantages of kin
equations, including easy programming in parallel compu
and accurately simulating flows with complicated wall g
ometries and interfaces. Gunstensenet al. @13# simulated the
Rayleigh-Taylor instability using a two-phase lattice-g
model. Lattice Boltzmann methods for multiphases and m
ticomponents have been developed by Gunstensenet al.
@14#, Shan and Chen@15#, and Swiftet al. @16#.

In this paper we extend the multicomponent model
Gunstensenet al. @14# and Grunauet al. @17# for studying
the two-dimensional Rayleigh-Taylor instability. A squa
lattice with multiple speeds is used. Let us definef i(x,t) as
the total particle density distribution, atx and time t with
velocity ci. Here f i5 f i

11 f i
2 , i 51, . . . ,9 for the D2Q9

model @18# or i 51, . . . ,13 for theD2Q13 @19# model. The
velocity ci includes eight vectors along the links of th
square lattice and a zero velocity for the D2Q9 mod
D2Q13 also includes four velocities with speed 2~in lattice
units!. These velocities are~0,0!, (61,0), (0,61), (61,
61), (62,0), and (0,62). The lattice Boltzmann equatio
for fluids can be written as
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f i
l~x1ci,t11!2 f i

l~x,t !5~V i
l !11~V i

l !22
tpG•ci

cd
, ~1!

wheretp andcd are constants, the indexl refers to either the
first or the second fluid, and the indexp equalsci

2 . For the
first part of the collision operator we use the Bhatnag
Gross-Krook~BGK! approximation@20–22,18,23#

~V i
l !152

1

t
~ f i

l2 f i
l ~eq!!, ~2!

which represents the process of relaxation to local equi
rium, wheref i

l (eq) is the local equilibrium distribution func-
tion and t is the relaxation time. One suitable equilibriu
distribution function leading to the Navier-Stokes equatio
is @18#

f i
l ~eq!5r p

l r1tprFciaua

cd
2 1

~ciacib2cd
2dab!

2cd
4 uaubG . ~3!

Herecd
2 , tp , andr p

l are listed in Table I, wherecl ( l 51,2)
are acoustic speeds of the two fluids. The greek subscripa
andb denote the spatial directions in Cartesian coordina
The total densityr, the densities of two fluids,r1 and r2 ,
and the macroscopic velocity,u, are defined byr5r1

1r2 , r15( i f i
1 , r25( i f i

2 , ru5( ici f i .
The second part of the collision operator@14,17# in Eq.

~1! is defined as follows:

~V i
l !25

a

4

tp

t1
uFuS 2~ci•F!2

ci
2F2 21D , ~4!

where F(x)5( ici@r1(x1ci)2r2(x1ci)# is the local color
gradient, anda is a free parameter which is linearly propo
tional to the surface tension.G is a vector representing a
external force. To maintain the interface between fluids,
follow Gunstensen’s scheme@14# to redistribute the particles

TABLE I. The parameters in the equilibrium distributio
function.

Model cd
2 t0 t1 t2 t4 r 0

l r 1
l r 2

l r 4
l

D2Q9 1
3

4
9

1
9

1
36 12

5
3 cl

2 1
3 cl

2 1
12cl

2

D2Q13 2
5

2
5

7
5

1
25

1
300 12

3
2 cl

2 4
15cl

2 1
10cl

2 1
120cl

2
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after each collision step in a way that maximizes the quan
(( ici f i

1)•F, while requiring thatr1 , r2 , andf i(x,t) are con-
served at each site.

Using the Chapman-Enskog multiscale technique@12#, we
can obtain the following macroscopic dynamical equations
the low Mach number or the nearly incompressible limit:

] tr1]a~rua!50, ~5!

] t~rua!1]b~ruaub!52]ap2]bpab2Ga , ~6!

p5c1
2r11c2

2r21p8, pab5nr~]aub1]bua!.

Here viscosityn5cd
2/2(2t21) andp8;u“•Fu are zero ex-

cept in the interface between the two fluids, creating
effects of surface tension. Using the definition of mechan
surface tension, and after some algebra, we obtain an
lytic formula for the surface tension:s512atr or 42atr
for the D2Q9 or the D2Q13 model, respectively. We po
out that we have multiplied by the proper factortp in Eq. ~4!
for each velocity in order to obtain an isotropic surface te
sion. For example, for the D2Q13 model,s542atrg(u f),
where g(u f)5 1

6 ( i ic i
4(tp /t1)cos2(2ui22uf)51. Here u f is

the angle between thex axis and the normal of the interfac
andu i is the angle between thex axis andci. It is the proper
choice factors that makeg(u f) constant. This is an importan
extension of the single-speed multiphase model.

Numerical simulations of the Rayleigh-Taylor instabili
have been carried out using the above two lattice Boltzm
models. First, the linear growth rate was checked for
D2Q9 model. In the simulation we setG52rgey to provide
the gravitational acceleration,g, along the negativey axis.
Initially, a fluid of densityr1 rests on the top of another flui
of density r2(r1.r2). To get the correct pressure for th
stationary fluid, we takec25cd , c25(r2 /r1)cd . A small
perturbation y(x)5y0 cos(kx) is added at the interface
wherey0<0.02l, the wave numberk52p/l, andl is the
wavelength of the perturbation. The height of the fluid in t
vertical ory direction,H, satisfiesHk@1. Periodic boundary
conditions are used in the horizontal direction and smo
wall conditions are used at the top and bottom. The linea
perturbed solution of Eqs.~4! and ~5! in the incompressible
limit predicts that the amplitude of perturbation increas
with time @3#,

h~ t !5a0egt1b0e2g8t,

wherea0 ,b0 satisfy a01b05y0 , a0g2b0g850, andg,g8
>0. g is the linear growth rate and satisfies the dispers
relation,

4gk1@2a1~r11r2!g2#S 1

m1k1Am2
2k21m2r2g

1
1

m2k1Am1
2k21m1r1g

D 50, ~7!

wherem l5r ln l , a5(r12r2)kg2k3s.
Figure 1 shows a comparison of the linear theory w

numerical results. In the simulation, we have takeng50.25
31024, t51, r153, and r251. The agreement betwee
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theory and the lattice Boltzmann simulation is reasona
good. However, a small difference is observed and the
ference seems to increase with increasing of the wave n
ber. We do not have insight at this stage about this diff
ence.

The dynamics of this flow can be described by five
mensionless parameters: the Atwood number,A5(r1
2r2)/(r11r2); the Reynolds number,Re5LV/n; the Euler
number, E5P/(rV2); the Froude number,Fe5V2/(gL);
and the Strouhal number,St5L/(TV). L, T, V, P, andr are
the characteristic length, time, speed, pressure, and den
Figure 2 shows the evolution of interfaces using the D2Q
model with g51024, n50.2, r153, r251, s50, l560
and the D2Q9 model with the same five dimensionless
rameters for times atgt55, 10, and 18, for which the linea
growth rate isg50.91731023. As shown in Figs. 2~a! and
2~b!, the sinusoidal perturbation grows initially and the
changes into a round-topped bubble, and then the light fl
rises into the heavy fluid and spikes formed by the hea
fluid fall into the light fluid. As the spike falls, the Helmholt
instability along the edges of the spike induces a mushro

FIG. 1. The growth rateg vs the wave numberk. Dx is the
lattice spacing andDt is the time increment.

FIG. 2. Interface evolution for the RT instability atgt56, 10,
and 18. The solid curve is the result for the D2Q13 model and
dashed curve for the D2Q9 model.
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like flow pattern. This result agrees with the results of a fin
difference code using the front tracking method@4,5,7#. Fi-
nally, in Fig. 2~c! the mushroom breaks and drops a
formed. At this stage of the instability the interface is ve
complicated. It is difficult to track these complex motio
using conventional numerical methods. It can also be s
that the results of the two models agree well. This furth
confirms the reliability of the lattice BGK model~1!–~4!.

Figure 3 shows the time evolution of the height of t
heavy fluid moving into the light fluid and the height of th
light fluid moving into the heavy fluid using D2Q13. Initiall
the heights grow exponentially. Then, after a transition,
bubble rises with constant velocity. This agrees qualitativ
with Taylor’s experiments. Taylor derived an empirical fo
mula for the bubble velocity:Vb5CAAgr, whereC50.32
and r is the bubble radius. Takingr 5l/2, the Taylor for-
mula givesVb50.0124, which is to be compared with th
best fit in Fig. 3,Vb50.0107. It should be pointed out that
the Taylor experiment, the dimensionless parameterR
5nk2/g is much smaller than 1, whereas in our numeri
simulationR equals 2 due to the relatively large viscosity
the lattice Boltzmann model. The difference in the grow
velocity could be attributed to the different values ofR used.

Finally, we simulated the growth of the instability from
random initial perturbations. The perturbation ish
5(nancos(knx)1bn sin(knx), kn52pnLx

21 . Here Lx is the
length of the simulation domain in thex or horizontal direc-
tion andan ,bn were chosen at random from a Gaussian d
tribution, n,@nmin ,nmax#. We have chosen the two fluids t
have the same density~for better numerical stability! in this
simulation, but they are subjected to different body forc
r15r2 and G52(g1r11g2r2)ey. This can be considere
to be the ideal limit of the Rayleigh-Taylor instability whe
r1 approachesr2 but g approaches infinity in such a wa
that the difference in the gravitational force remains co
stant. We setg152g25g, although this is not required.

Two simulations were run with 3003300 points,g50.5
31024, nmin51, nmax530, andn51/30 or 1/1500. Figure 4
shows the location of the interfaces atgt2550, 450, and
1250 for n51/1500. Because of interactions betwe
bubbles and drops, the dominant wavelength of the interf

FIG. 3. Heights of the bubble and the spike as a function
time.
e
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increases from'Lx/25 to 'Lx/2 at the end of the simula
tion. This phenomenon agrees with the results of Youn
@4,5# using MAC methods or Van Leer methods. In our r
sults, there are more small droplets near the interface. T
difference may come from the fact that we use the sa
density for both fluids.

Figure 5 shows the width of the mixing region as a fun
tion of gt2 for two viscosities. The mixing region is define
as the region in which the average concentration of one
the fluids is in the range 0.01 to 0.99. The widths are
proximately linear functions ofgt2. This result is similar to
earlier experimental and theoretical results@24,4,5,7,25,8#.

f

FIG. 4. Interface at~a! gt2550, ~b! gt25450, and ~c! gt2

51250 forn51/1500.

FIG. 5. Width of the mixing region as a function ofgt2. The
straight lines were obtained by fitting the formulas described in
text.
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The depth to which the light fluid enters the heavy fluid
given by

h~ t !5aAgt21h0 , ~8!

whereh0 anda are constants.a is found to be insensitive to
the density ratio. The experiments gave ana of 0.6 to 0.7
and theoretical studies including numerical simulations g
an a of 0.4 to 0.7. It is difficult to compare our numerica
results with the above equations quantitatively because
simulations assumedr15r2 . A reasonable generalization o
Eq. ~8! is

h~ t !5a
r1g12r2g2

r11r2
t21h0 .

When g15g25g, Eq. ~8! is recovered. Assumingg15
2g25g, r15r2 , andw52h, the above equation become

w~ t !52agt212h0 .
ve
e

ur

We fit the numerical results of the mixing width using th
equation. These fits are included in Fig. 5. The values oa
are 0.65 and 0.61, respectively. These numbers agree
with experiments and other theoretical results. Of course
is not a direct comparison.

In this paper, we have applied a lattice Boltzmann mo
based on a previous multicomponent model to simulate
Rayleigh-Taylor instability. The linear growth rate agre
with analytic solutions for incompressible fluids. The sing
bubble dynamics agrees with experiments and other meth
qualitatively. The velocity of the bubble is close to that of
incompressible ideal fluid. The instability caused by rand
initial perturbations has also been simulated. This res
agrees with experiments and other theoretical results.
work shows that the lattice Boltzmann model is a useful t
for simulating Rayleigh-Taylor instabilities. An importan
extension of this work is to develop a lattice Boltzma
model which simulates multicomponent fluids with differe
densities and very small viscosities.
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